Topological basis problem and \mathbb{P}_{max}

Yinhe Peng

Institute of Mathematics Academy of Mathematics and Systems Science Chinese Academy of Sciences

March 25, 2019

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

•
$$d(x, y) = 0$$
 iff $x = y$.

$$\blacktriangleright d(x,y) = d(y,x).$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

•
$$d(x, y) = 0$$
 iff $x = y$.

$$\blacktriangleright d(x,y) = d(y,x).$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

A topological space X is metrizable if there is a metric d on X that determines the topology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

•
$$d(x, y) = 0$$
 iff $x = y$.

- $\blacktriangleright d(x,y) = d(y,x).$
- $d(x,z) \leq d(x,y) + d(y,z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.

A normal space is Perfectly normal (T_6) if every closed set is the intersection of countably many open sets.

ション ふゆ アメリア メリア しょうくの

A metric d on a set X is a function $d: X \times X \rightarrow [0, \infty)$ such that

•
$$d(x, y) = 0$$
 iff $x = y$.

- $\blacktriangleright d(x,y) = d(y,x).$
- $d(x,z) \leq d(x,y) + d(y,z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.

A normal space is Perfectly normal (T_6) if every closed set is the intersection of countably many open sets.

うして ふゆう ふほう ふほう うらつ

Every metric space is T_6 : $F = \bigcap \{B(F, 2^{-n}) : n \in \mathbb{N}\}.$

Is every T_6 space metrizable?

Is every T_6 space metrizable? Example (S)

Sorgenfrey line: $(\mathbb{R}, \langle [a, b) : a, b \in \mathbb{R} \rangle).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Is every compact T_6 space metrizable?

Question

Is every compact T_6 space metrizable?

Fact

For a compact space X, if X^2 is T_6 , then X is metrizable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Is every compact T_6 space metrizable?

Fact

For a compact space X, if X^2 is T_6 , then X is metrizable.

Example

Alexandrov double arrow space $[0,1]\times\{0,1\}$ is compact $\mathcal{T}_6,$ not metrizable and contains $\mathbb{S}.$

Question

Is every compact T_6 space metrizable?

Fact

For a compact space X, if X^2 is T_6 , then X is metrizable.

Example

Alexandrov double arrow space $[0,1]\times\{0,1\}$ is compact $\mathcal{T}_6,$ not metrizable and contains $\mathbb S.$

Question

Is it true that a compact T_6 space is metrizable iff it contains no Sorgenfrey subsets?

A separable metric space has no uncountable discrete subset $\mathbb{D}.$

A separable metric space has no uncountable discrete subset $\mathbb{D}.$

Question

Is it true that a T_3 space is a continuous image of a separable metric space if it contains no S or \mathbb{D} ?

A separable metric space has no uncountable discrete subset \mathbb{D} .

Question

Is it true that a T_3 space is a continuous image of a separable metric space if it contains no S or \mathbb{D} ?

Fact (PFA)

If an uncountable T_3 space X is a continuous image of a separable metric space, then X contains an uncountable subset of \mathbb{R} .

うして ふゆう ふほう ふほう うらつ

A separable metric space has no uncountable discrete subset \mathbb{D} .

Question

Is it true that a T_3 space is a continuous image of a separable metric space if it contains no S or \mathbb{D} ?

Fact (PFA)

If an uncountable T_3 space X is a continuous image of a separable metric space, then X contains an uncountable subset of \mathbb{R} .

Question (PFA)

Is it true that every uncountable T_3 space contains an uncountable subspace of \mathbb{R} , \mathbb{S} , or \mathbb{D} ?

For regular uncountable spaces, is there a finite collection \mathcal{B} such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For regular uncountable spaces, is there a finite collection \mathcal{B} such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

To answer this question we are willing to use standard forcing axioms (MA, PFA,...), and/or restrict ourselves to some appropriate subclass of well-behaved spaces.

The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality \aleph_1 embeds homomorphically into any uncountable separable metric space and that

every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_1 embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

うして ふゆう ふほう ふほう うらつ

Theorem (Baumgartner 1973)

PFA implies that every set of reals of cardinality \aleph_1 embeds homomorphically into any uncountable separable metric space and that

every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_1 embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

うして ふゆう ふほう ふほう うらつ

Note that the list \mathcal{B} must have at least three elements.

HS and HL

Hereditary Lindelöfness and hereditary separability play important roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

HS and HL

Hereditary Lindelöfness and hereditary separability play important roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Fact

- ► HL implies T₆.
- ► For compact/Lindelöf spaces, T₆ implies HL.

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains $\mathbb D$ or is HL ($\mathcal T_6).$

Theorem (M.E. Rudin, 1972)

Under some assumption, there is an S space.

Theorem (Todorcevic, 1983)

PFA implies that there is no S space.

So under PFA, an uncountable regular space either contains $\mathbb D$ or is HL ($\mathcal T_6).$

(ロ) (型) (E) (E) (E) (O)

Theorem (Moore, 2005)

There is an L space.

L groups

Adding algebraic structure will not help:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

```
Theorem (P.-Wu, 2014)
```

There is an L group.

L groups

Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

```
There is an L group.
```

It turns out that the class of L spaces/groups does not have a reasonably small basis.

L groups

Adding algebraic structure will not help:

```
Theorem (P.-Wu, 2014)
```

```
There is an L group.
```

It turns out that the class of L spaces/groups does not have a reasonably small basis.

```
Theorem (P.-Wu,2014)
```

For any $n < \omega$, there is an L group G such that G^n is an L group.

ション ふゆ アメリア メリア しょうくの

Inner topology

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the inner topology $(X, \tau^{I, \mathcal{C}})$ induced by \mathcal{C} is the topology with base $\{\{x\} \cup O^{I, \mathcal{C}} : x \in O, O \text{ is open}\}$ where $O^{I, \mathcal{C}} = \bigcup \{C \in \mathcal{C} : C \subset O\}$.

うして ふゆう ふほう ふほう うらつ

Inner topology

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the inner topology $(X, \tau^{I, \mathcal{C}})$ induced by \mathcal{C} is the topology with base $\{\{x\} \cup O^{I, \mathcal{C}} : x \in O, O \text{ is open}\}$ where $O^{I, \mathcal{C}} = \bigcup \{C \in \mathcal{C} : C \subset O\}$.

X has HL inner topology for some countable C if for any open set $O, O \setminus \{C \in C : C \subset O\}$ is at most countable.

Theorem (P-Todorcevic)

Assume PFA. If (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Question

Does X contain an uncountable set of reals if X^2 is first countable HL?

◆□ > < 個 > < E > < E > E 9 < 0</p>

Question

Does X contain an uncountable set of reals if X^2 is first countable HL?

We donot know any forcing that can force such an embedding.

Question

Does X contain an uncountable set of reals if X^2 is first countable HL?

We donot know any forcing that can force such an embedding. A possible approach is to use \mathbb{P}_{\max} forcing and try to find the embedding in an iteration.

Question

Does X contain an uncountable set of reals if X^2 is first countable HL?

We donot know any forcing that can force such an embedding. A possible approach is to use \mathbb{P}_{\max} forcing and try to find the embedding in an iteration.

Theorem

In Woodin's \mathbb{P}_{\max} extension $L(\mathbb{R})^{\mathbb{P}_{\max}}$, if (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Another reason of using $\mathbb{P}_{\mathsf{max}}\text{-linear orders}$

Sorgenfrey lines combines the real topology with the linear order of reals.

Another reason of using $\mathbb{P}_{\mathsf{max}}\text{-linear}$ orders

Sorgenfrey lines combines the real topology with the linear order of reals.

L spaces combines topologies with linear orders on ω_1 and S spaces combines topologies with linear orders on ω_1^* .

Another reason of using $\mathbb{P}_{\mathsf{max}}\text{-linear}$ orders

Sorgenfrey lines combines the real topology with the linear order of reals.

L spaces combines topologies with linear orders on ω_1 and S spaces combines topologies with linear orders on ω_1^* .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Question

Is there an HL space that combines the topology with some Aronszajn order?

Another reason of using \mathbb{P}_{max} -linear orders

Sorgenfrey lines combines the real topology with the linear order of reals.

L spaces combines topologies with linear orders on ω_1 and S spaces combines topologies with linear orders on ω_1^* .

Question

Is there an HL space that combines the topology with some Aronszajn order?

Theorem

In P-Wu's \mathbb{P}_{max} variation which forces the basis of linear orders to be $2^n + 3$, if (X, τ) is regular and $(X, \tau^{I,C})$ is HL for some countable C, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?