Topological basis problem and $\mathbb{P}_{\max }$

Yinhe Peng

Institute of Mathematics
Academy of Mathematics and Systems Science
Chinese Academy of Sciences

March 25, 2019

Metric spaces

A metric d on a set X is a function $d: X \times X \rightarrow[0, \infty)$ such that

- $d(x, y)=0$ iff $x=y$.
- $d(x, y)=d(y, x)$.
- $d(x, z) \leq d(x, y)+d(y, z)$.

Metric spaces

A metric d on a set X is a function $d: X \times X \rightarrow[0, \infty)$ such that

- $d(x, y)=0$ iff $x=y$.
- $d(x, y)=d(y, x)$.
- $d(x, z) \leq d(x, y)+d(y, z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.

Metric spaces

A metric d on a set X is a function $d: X \times X \rightarrow[0, \infty)$ such that

- $d(x, y)=0$ iff $x=y$.
- $d(x, y)=d(y, x)$.
- $d(x, z) \leq d(x, y)+d(y, z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.
A normal space is Perfectly normal $\left(T_{6}\right)$ if every closed set is the intersection of countably many open sets.

Metric spaces

A metric d on a set X is a function $d: X \times X \rightarrow[0, \infty)$ such that

- $d(x, y)=0$ iff $x=y$.
- $d(x, y)=d(y, x)$.
- $d(x, z) \leq d(x, y)+d(y, z)$.

A topological space X is metrizable if there is a metric d on X that determines the topology.
A normal space is Perfectly normal $\left(T_{6}\right)$ if every closed set is the intersection of countably many open sets.

Every metric space is $T_{6}: F=\bigcap\left\{B\left(F, 2^{-n}\right): n \in \mathbb{N}\right\}$.

Metrization

Is every T_{6} space metrizable?

Metrization

Is every T_{6} space metrizable?
Example (\mathbb{S})
Sorgenfrey line: $(\mathbb{R},\langle[a, b): a, b \in \mathbb{R}\rangle)$.

Metrization

Question
Is every compact T_{6} space metrizable?

Metrization

Question
Is every compact T_{6} space metrizable?
Fact
For a compact space X, if X^{2} is T_{6}, then X is metrizable.

Metrization

Question
Is every compact T_{6} space metrizable?
Fact
For a compact space X, if X^{2} is T_{6}, then X is metrizable.
Example
Alexandrov double arrow space $[0,1] \times\{0,1\}$ is compact T_{6}, not metrizable and contains \mathbb{S}.

Metrization

Question
Is every compact T_{6} space metrizable?
Fact
For a compact space X, if X^{2} is T_{6}, then X is metrizable.
Example
Alexandrov double arrow space $[0,1] \times\{0,1\}$ is compact T_{6}, not metrizable and contains \mathbb{S}.

Question
Is it true that a compact T_{6} space is metrizable iff it contains no Sorgenfrey subsets?

General spaces

A separable metric space has no uncountable discrete subset \mathbb{D}.

General spaces

A separable metric space has no uncountable discrete subset \mathbb{D}.
Question
Is it true that a T_{3} space is a continuous image of a separable metric space if it contains no \mathbb{S} or \mathbb{D} ?

General spaces

A separable metric space has no uncountable discrete subset \mathbb{D}.
Question
Is it true that a T_{3} space is a continuous image of a separable metric space if it contains no \mathbb{S} or \mathbb{D} ?

Fact (PFA)
If an uncountable T_{3} space X is a continuous image of a separable metric space, then X contains an uncountable subset of \mathbb{R}.

General spaces

A separable metric space has no uncountable discrete subset \mathbb{D}.

Question

Is it true that a T_{3} space is a continuous image of a separable metric space if it contains no \mathbb{S} or \mathbb{D} ?

Fact (PFA)
If an uncountable T_{3} space X is a continuous image of a separable metric space, then X contains an uncountable subset of \mathbb{R}.

Question (PFA)
Is it true that every uncountable T_{3} space contains an uncountable subspace of \mathbb{R}, \mathbb{S}, or \mathbb{D} ?

Topological basis problem

For regular uncountable spaces, is there a finite collection \mathcal{B} such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

Topological basis problem

For regular uncountable spaces, is there a finite collection \mathcal{B} such that every other regular uncountable space X contains a subspace homeomorphic to one space from \mathcal{B} ?

To answer this question we are willing to use standard forcing axioms (MA, PFA,...), and/or restrict ourselves to some appropriate subclass of well-behaved spaces.

The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)
PFA implies that every set of reals of cardinality \aleph_{1} embeds homomorphically into any uncountable separable metric space and that
every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_{1} embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

The real line and the Sorgenfrey line

Theorem (Baumgartner 1973)
PFA implies that every set of reals of cardinality \aleph_{1} embeds homomorphically into any uncountable separable metric space and that
every subset of the Sorgenfrey line $(\mathbb{R}, \rightarrow)$ of cardinality \aleph_{1} embeds homomorphically into any uncountable subspace of $(\mathbb{R}, \rightarrow)$.

Note that the list \mathcal{B} must have at least three elements.

HS and HL

Hereditary Lindelöfness and hereditary separability play important roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

HS and HL

Hereditary Lindelöfness and hereditary separability play important roles in the basis problem.

A regular space is Lindelöf if every open cover has a countable subcover.

An S space is a regular hereditarily separable (HS) space which is not Lindelöf.

An L space is a regular hereditarily Lindelöf (HL) space which is not separable.

Fact

- HL implies T_{6}.
- For compact/Lindelöf spaces, T_{6} implies HL.

S and L

Theorem (M.E. Rudin, 1972)
Under some assumption, there is an S space.

S and L

Theorem (M.E. Rudin, 1972)
Under some assumption, there is an S space.
Theorem (Todorcevic, 1983)
PFA implies that there is no S space.

S and L

Theorem (M.E. Rudin, 1972)
Under some assumption, there is an S space.
Theorem (Todorcevic, 1983)
PFA implies that there is no S space.
So under PFA, an uncountable regular space either contains \mathbb{D} or is HL (T_{6}).

S and L

Theorem (M.E. Rudin, 1972)
Under some assumption, there is an S space.
Theorem (Todorcevic, 1983)
PFA implies that there is no S space.
So under PFA, an uncountable regular space either contains \mathbb{D} or is $\mathrm{HL}\left(T_{6}\right)$.

Theorem (Moore, 2005)
There is an L space.

Adding algebraic structure will not help:
Theorem (P.-Wu, 2014)
There is an L group.

Adding algebraic structure will not help:
Theorem (P.-Wu, 2014)
There is an L group.
It turns out that the class of L spaces/groups does not have a reasonably small basis.

Adding algebraic structure will not help:
Theorem (P.-Wu, 2014)
There is an L group.
It turns out that the class of L spaces/groups does not have a reasonably small basis.

Theorem (P.-Wu, 2014)
For any $n<\omega$, there is an L group G such that G^{n} is an L group.

Inner topology

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the inner topology $\left(X, \tau^{I, \mathcal{C}}\right)$ induced by \mathcal{C} is the topology with base $\left\{\{x\} \cup O^{\prime, \mathcal{C}}: x \in O, O\right.$ is open $\}$ where $O^{I, \mathcal{C}}=\bigcup\{C \in \mathcal{C}: C \subset O\}$.

Inner topology

For a topological space (X, τ) and a collection $\mathcal{C} \subset P(X)$, the inner topology $\left(X, \tau^{I, \mathcal{C}}\right)$ induced by \mathcal{C} is the topology with base $\left\{\{x\} \cup O^{\prime, \mathcal{C}}: x \in O, O\right.$ is open $\}$ where $O^{\prime, \mathcal{C}}=\bigcup\{C \in \mathcal{C}: C \subset O\}$.
X has HL inner topology for some countable \mathcal{C} if for any open set $O, O \backslash\{C \in \mathcal{C}: C \subset O\}$ is at most countable.

Theorem (P-Todorcevic)
Assume PFA. If (X, τ) is regular and $\left(X, \tau^{I, \mathcal{C}}\right)$ is HL for some countable \mathcal{C}, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Possible solution

Question

Does X contain an uncountable set of reals if X^{2} is first countable HL?

Possible solution

Question

Does X contain an uncountable set of reals if X^{2} is first countable HL?

We donot know any forcing that can force such an embedding.

Possible solution

Question

Does X contain an uncountable set of reals if X^{2} is first countable HL?

We donot know any forcing that can force such an embedding. A possible approach is to use $\mathbb{P}_{\text {max }}$ forcing and try to find the embedding in an iteration.

Possible solution

Question

Does X contain an uncountable set of reals if X^{2} is first countable HL?

We donot know any forcing that can force such an embedding. A possible approach is to use $\mathbb{P}_{\max }$ forcing and try to find the embedding in an iteration.

Theorem
In Woodin's $\mathbb{P}_{\text {max }}$ extension $L(\mathbb{R})^{\mathbb{P}_{\text {max }}}$, if (X, τ) is regular and $\left(X, \tau^{I, \mathcal{C}}\right)$ is HL for some countable \mathcal{C}, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Another reason of using $\mathbb{P}_{\text {max }}$-linear orders

Sorgenfrey lines combines the real topology with the linear order of reals.

Another reason of using $\mathbb{P}_{\max }$-linear orders

Sorgenfrey lines combines the real topology with the linear order of reals.
L spaces combines topologies with linear orders on ω_{1} and S spaces combines topologies with linear orders on ω_{1}^{*}.

Another reason of using $\mathbb{P}_{\max }$-linear orders

Sorgenfrey lines combines the real topology with the linear order of reals.
L spaces combines topologies with linear orders on ω_{1} and S spaces combines topologies with linear orders on ω_{1}^{*}.

Question
Is there an HL space that combines the topology with some Aronszajn order?

Another reason of using $\mathbb{P}_{\max }$-linear orders

Sorgenfrey lines combines the real topology with the linear order of reals.
L spaces combines topologies with linear orders on ω_{1} and S spaces combines topologies with linear orders on ω_{1}^{*}.

Question

Is there an HL space that combines the topology with some Aronszajn order?

Theorem
In P-Wu's $\mathbb{P}_{\text {max }}$ variation which forces the basis of linear orders to be $2^{n}+3$, if (X, τ) is regular and $\left(X, \tau^{I, \mathcal{C}}\right)$ is $H L$ for some countable \mathcal{C}, then (X, τ) either is a continuous image of a separable metric space or contains an uncountable Sorgenfrey subset.

Thank you!

